Информационный сервер для программистов: Исходники со всего света. Паскальные исходники со всего света
  Powered by Поисковый сервер Яndex: Найдется ВСЁ!
На Главную Pascal Форум Информер Страны мира
   Математика    >>    romberg
   
 
 Numerical Integration by the Romberg Method  Unknown 03.04.1985

Два варианта программы для численного интегрирования функции методом Ромберга на заданном участке. В качестве примера приведена функция f(x) = 1/x.



2k 
 

program romb1; { -> 281 } { integration by the romberg method } const tol = 1.0E-4; var done : boolean; sum,upper,lower : real; external procedure cls; function fx(x: real): real; { find f(x)= 1.0/x; watch out for x=0 } begin fx:=1.0/x end; procedure romb(function f(x:real): real; lower,upper,tol: real; var ans: real); { numerical integration by the Romberg method } var nx : array[1..16] of integer; t : array[1..136] of real; done,error : boolean; pieces,nt,i,ii,n,nn, l,ntra,k,m,j : integer ; delta_x,c,sum,fotom,x : real ; begin done:=false; error:=false; pieces:=1; nx[1]:=1; delta_x:=(upper-lower)/pieces; c:=(f(lower)+f(upper))*0.5; t[1]:=delta_x*c; n:=1; nn:=2; sum:=c; repeat n:=n+1; fotom:=4.0; nx[n]:=nn; pieces:=pieces*2; l:=pieces-1; delta_x:=(upper-lower)/pieces; { compute trapezoidal sum for 2^(n-1)+1 points } for ii:=1 to (l+1) div 2 do begin i:=ii*2-1; x:=lower+i*delta_x; sum:=sum+f(x) end; t[nn]:=delta_x*sum; write(pieces:5,t[nn]); ntra:=nx[n-1]; k:=n-1; { compute n-th row of T array } for m:=1 to k do begin j:=nn+m; nt:=nx[n-1]+m-1; t[j]:=(fotom*t[j-1]-t[nt])/(fotom-1.0); fotom:=fotom*4.0 end; writeln(j:4,t[j]); if n>4 then begin if t[nn+1]<>0.0 then if (abs(t[ntra+1]-t[nn+1])<=abs(t[nn+1]*tol)) or (abs(t[nn-1]-t[j])<=abs(t[j]*tol)) then done:=true else if n>15 then begin done:=true; error:=true end end; { if n>4 } nn:=j+1 until done; ans:=t[j] end; { ROMBERG } begin { main program } cls; lower:=1.0; upper:=9.0; writeln; romb(fx,lower,upper,tol,sum); writeln; writeln(chr(7),'Area= ',sum) end.